TMD's at High Density: Quasi-Classical Approximation

Part I of 2

Matthew D. Sievert

with Yuri Kovchegov

1505 . 01176 1310 . 5028 EIC Users' Group Meeting Friday Jan. 8, 2016

Overview

- ullet Hard scale Q_s leads to factorization of the TMD's themselves.
- Calculable structure from first-principles QCD

$$\phi_{\alpha\beta}(x,\vec{k}_{\perp}) = \int \frac{d^{2-r}}{(2\pi)^3} e^{ik\cdot r} \langle h(p,S) | \bar{\psi}_{\beta}(0) \mathcal{U}[0,r] \psi_{\alpha}(r) | h(p,S) \rangle$$

$$\overline{\phi_{\alpha\beta}}(x,\vec{k}_{\perp}) = \int \frac{d^{2-r}}{(2\pi)^3} e^{ik\cdot r} \langle h(p,S) | \overline{\psi}_{\beta}(0) \mathcal{U}[0,r] \psi_{\alpha}(r) | h(p,S) \rangle$$

		Quark Polarization		
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	$f_1 = \bullet$		$h_1^{\perp} = $
	L		$g_{1L} = \longrightarrow - \longrightarrow$ Helicity	$h_{1L}^{\perp} = \nearrow - \nearrow$
	т	$f_{1T}^{\perp} = \bullet$ - Sivers	$g_{1T}^{\perp} = \begin{array}{c} \uparrow \\ \bullet \end{array}$	$h_{1} = \begin{array}{c} \uparrow \\ - \\ \uparrow \\ h_{1T} \end{array}$
Γ		γ^+	$\gamma^+\gamma^5$	$\gamma^+ \gamma_\perp^i \gamma^5$

• 3D distributions of quarks with spin and momentum.

$$\phi_{\alpha\beta}(x,\vec{k}_{\perp}) = \int \frac{d^{2-r}}{(2\pi)^3} e^{ik\cdot r} \langle h(p,S) | \bar{\psi}_{\beta}(0) \mathcal{U}[0,r] \psi_{\alpha}(r) | h(p,S) \rangle$$

		Quark Polarization			
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)	
Nucleon Polarization	U	$f_1 = \bullet$		$h_1^{\perp} = \bigcirc \bigcirc \bigcirc$ Boer-Mulders	
	L		$g_{1L} = \longrightarrow - \longrightarrow$ Helicity	$h_{1L}^{\perp} = $	
	т	$f_{1T}^{\perp} = \bullet$ - • Sivers	$g_{1T}^{\perp} = \begin{array}{c} \uparrow \\ \bullet \end{array}$	$h_{1} = \begin{array}{c} \uparrow \\ - \\ \uparrow \\ h_{1T} \end{array}$ Transversity $- \begin{array}{c} \downarrow \\ \downarrow \\ - \end{array}$	
Γ		γ^+	$\gamma^+\gamma^5$	$\gamma^+ \gamma_\perp^i \gamma^5$	

- 3D distributions of quarks with spin and momentum.
- Bilocal quark fields, connected by a staple-shaped gauge link.

$$\phi_{\alpha\beta}(x,\vec{k}_{\perp}) = \int \frac{d^{2-r}}{(2\pi)^3} e^{ik\cdot r} \langle h(p,S) | \bar{\psi}_{\beta}(0) | \mathcal{U}[0,r] | \psi_{\alpha}(r) | h(p,S) \rangle$$

		Quark Polarization		
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	$f_1 = \bullet$		$h_1^{\perp} = \bigcirc \bigcirc \bigcirc$ Boer-Mulders
			$g_{1L} = \longrightarrow - \longrightarrow$ Helicity	$h_{1L}^{\perp} = $
	н	$f_{1T}^{\perp} = \bullet$ - • Sivers	$g_{1T}^{\perp} = \begin{array}{c} \uparrow \\ \bullet \end{array}$	$h_{1} = \begin{array}{c} \uparrow \\ - \\ \uparrow \\ h_{1T} \end{array}$ $- \begin{array}{c} \uparrow \\ \uparrow \\ - \\ \checkmark \end{array}$
Γ		γ^+	$\gamma^+\gamma^5$	$\gamma^+ \gamma_\perp^i \gamma^5$

- 3D distributions of quarks with spin and momentum.
- Bilocal quark fields, connected by a staple-shaped gauge link.
- Gauge fields describe physical distortion of quark momentum.

Dilute Systems: Lensing

Dilute Systems: Lensing

 Produced quark and hadron remnants are color-correlated.

Dilute Systems: Lensing

- Produced quark and hadron remnants are color-correlated.
- FSI are attractive, deflecting the observed quark toward remnants.

Dilute Systems: Lensing

- Produced quark and hadron remnants are color-correlated.
- FSI are attractive, deflecting the observed quark toward remnants.

Dense Systems: Broadening

Dilute Systems: Lensing

- Produced quark and hadron remnants are color-correlated.
- FSI are attractive, deflecting the observed quark toward remnants.

Dense Systems: Broadening

• High density screens the net charge.

Dilute Systems: Lensing

- Produced quark and hadron remnants are color-correlated.
- FSI are attractive, deflecting the observed quark toward remnants.

Dense Systems: Broadening

- High density screens the net charge.
- Rescattering occurs on the random local charge density.

Dilute Systems: Lensing

- Produced quark and hadron remnants are color-correlated.
- FSI are attractive, deflecting the observed quark toward remnants.

Dense Systems: Broadening

- High density screens the net charge.
- Rescattering occurs on the random local charge density.
- FSI are random, broadening the quark momentum isotropically.

M. Sievert

High Density: The Quasi-Classical Limit

 At high density and weak coupling, multiple independent scattering occurs on the local charge density.

Nucleus: $A\gg 1$ Proton: $\rho\gg 1$

High Density: The Quasi-Classical Limit

 At high density and weak coupling, multiple independent scattering occurs on the local charge density.

 $\rho \gg 1$ Nucleus: $A \gg 1$ Proton:

 Resumming the high-density effects leads to scattering in a classical background field.

Nucleus: $\alpha_s^2 A^{1/3} \sim 1$ Proton: $\alpha_s \rho \sim 1$

M. Sievert

High Density: The Quasi-Classical Limit

 At high density and weak coupling, multiple independent scattering occurs on the local charge density.

Nucleus: $A\gg 1$ Proton: $\rho\gg 1$

 Resumming the high-density effects leads to scattering in a classical background field.

Nucleus: $\alpha_s^2 A^{1/3} \sim 1$ Proton: $\alpha_s \rho \sim 1$

• High charge density defines a hard momentum scale Q_s which dynamically screens the IR gluon field.

Both:
$$\begin{array}{l} Q_s^2 \propto \alpha_s^2 A^{1/3} \propto \alpha_s \rho \\ Q_s^2 \gg \Lambda^2 \end{array}$$

M. Sievert

$$\langle h(p,S) | \overline{\psi}(0) \mathcal{U}[0,r] \psi(r) | h(p,S) \rangle$$

$$\langle A(p, S; Q_s) | \bar{\psi}(0) \mathcal{U}[0, r] \psi(r) | A(p, S; Q_s) \rangle$$

$$\left[\Psi_N^* \left\langle N \right| \bar{\psi}(0)\right] \left\langle \underbrace{(A-1)} \right| \, \mathcal{U}[0,r] \, |(A-1)\rangle \left[\psi(r) \, |N\rangle \, \Psi_N\right] \\ \alpha_s^2 A^{1/3} \sim \mathcal{O}(1) \\ \text{Leading order in } A^{1/3}$$

$$\phi \sim \left[\Psi_N \Psi_N^* \right] \frac{\langle N | \bar{\psi}(0) \, u[0,r] \, \psi(r) \, | N \rangle}{\text{Nuclear WF}} \frac{\left[\langle (A-1) | \, \mathcal{U}[0,r] \, | (A-1) \rangle \right]}{\text{Nucleonic TMD}}$$

Quasi-Classical Factorization

$$\underline{\Phi_{\alpha\beta}^{A}(x,\vec{k}_{\perp})} = \frac{A}{(2\pi)^{5}} \sum_{\sigma\sigma'} \int d^{2+}p \, d^{2-}b \, d^{2}r \, d^{2}k' \, e^{-i(\vec{k}_{\perp} - \vec{k}_{\perp}' - \hat{x}\vec{p}_{\perp}) \cdot \vec{r}_{\perp}}$$

TMD's

$$\times W_{\sigma'\sigma}(p,b) \left[\phi_{\alpha\beta}^{N}(\hat{x},\vec{k}'_{\perp}) \right]_{\sigma\sigma'} S_{(r_T,b_T)}^{[\infty^-,b^-]} \qquad \hat{x} \equiv \frac{P^+}{p^+} x$$

$$\hat{x} \equiv \frac{P^+}{p^+} x$$

Nucleonic TMD's

Quasi-Classical Factorization

$$\frac{\Phi_{\alpha\beta}^{A}(x,\vec{k}_{\perp})}{\text{Nuclear}} = \frac{A}{(2\pi)^{5}} \sum_{\sigma\sigma'} \int d^{2+}p \, d^{2-}b \, d^{2}r \, d^{2}k' \, e^{-i(\vec{k}_{\perp} - \vec{k}_{\perp}' - \hat{x}\vec{p}_{\perp}) \cdot \vec{r}_{\perp}} \\ \times \underbrace{W_{\sigma'\sigma}(p,b)}_{\sigma\sigma'} \left[\underline{\phi_{\alpha\beta}^{N}(\hat{x},\vec{k}_{\perp}')}_{\sigma\sigma'} S_{(r_{T},b_{T})}^{[\infty^{-},b^{-}]} \right] \hat{x} \equiv \frac{P^{+}}{p^{+}} x$$

Wigner Distribution (Nuclear WF's)

Nucleonic TMD's

$$W_{\sigma'\sigma}(\bar{p},b) = \frac{1}{2(2\pi)^3} \int \frac{d^{2+}(p-p')}{\sqrt{p^+p'^+}} e^{-i(p-p')\cdot b} \Psi_{\sigma}^N(p) \Psi_{\sigma'}^{N*}(p')$$

"Average" phase space distribution of nucleons in the nucleus: Leading Order in $A^{1/3}$

Quasi-Classical Factorization

$$\underline{\Phi_{\alpha\beta}^{A}(x,\vec{k}_{\perp})} = \frac{A}{(2\pi)^{5}} \sum_{\sigma\sigma'} \int d^{2+}p \, d^{2-}b \, d^{2}r \, d^{2}k' \, e^{-i(\vec{k}_{\perp} - \vec{k}_{\perp}' - \hat{x}\vec{p}_{\perp}) \cdot \vec{r}_{\perp}}$$
Nuclear

Nuclear TMD's

$$\times W_{\sigma'\sigma}(p,b) \left[\phi_{\alpha\beta}^{N}(\hat{x},\vec{k}'_{\perp}) \right]_{\sigma\sigma'} S_{(r_T,b_T)}^{[\infty^-,b^-]}$$

 $\hat{x} \equiv \frac{P^+}{p^+} x$

Wigner Distribution (Nuclear WF's)

Nucleonic TMD's

Gauge Link (Classical)

$$W_{\sigma'\sigma}(\bar{p},b) = \frac{1}{2(2\pi)^3} \int \frac{d^{2+}(p-p')}{\sqrt{p^+p'^+}} e^{-i(p-p')\cdot b} \Psi_{\sigma}^N(p) \Psi_{\sigma'}^{N*}(p')$$

"Average" phase space distribution of nucleons in the nucleus: Leading Order in $A^{1/3}$

$$S_{(r_T,b_T)}^{[\infty^-,b^-]} = \exp\left[-\frac{1}{4}r_T^2 Q_s^2(b_T) \left(\frac{R^-(b_T)-b^-}{2R^-(b_T)}\right)\right]$$

Multiple rescattering on spectator nucleons: Resums $\, \alpha_s^2 A^{1/3} \sim \mathcal{O}(1) \,$

• Consider for simplicity an unpolarized nucleus.

- Consider for simplicity an unpolarized nucleus.
- \bullet The spin of the nucleons is described by the 2 x 2 density matrix $\,W_{\lambda'\lambda}\,$
 - In the rest frame: $[W]_{\lambda'\lambda} = W_{unp}[1]_{\lambda'\lambda} + \vec{W}_{pol} \cdot [\vec{\sigma}]_{\lambda'\lambda}$ $W(\vec{p}, \vec{b}, \vec{S}) = W_{unp}(\vec{p}, \vec{b}) + \vec{S} \cdot \vec{W}_{pol}(\vec{p}, \vec{b})$

- Consider for simplicity an unpolarized nucleus.
- \bullet The spin of the nucleons is described by the 2 x 2 density matrix $\,W_{\lambda'\lambda}\,$
 - In the rest frame: $[W]_{\lambda'\lambda} = W_{unp}[1]_{\lambda'\lambda} + \vec{W}_{pol} \cdot [\vec{\sigma}]_{\lambda'\lambda}$ $W(\vec{p}, \vec{b}, \vec{S}) = W_{unp}(\vec{p}, \vec{b}) + \vec{S} \cdot \vec{W}_{pol}(\vec{p}, \vec{b})$
 - Generalize to covariant spin vector by boosting from the rest frame.

- Consider for simplicity an unpolarized nucleus.
- \bullet The spin of the nucleons is described by the 2 x 2 density matrix $\,W_{\lambda'\lambda}\,$

• In the rest frame:
$$[W]_{\lambda'\lambda} = W_{unp}[1]_{\lambda'\lambda} + \vec{W}_{pol} \cdot [\vec{\sigma}]_{\lambda'\lambda}$$

$$W(\vec{p}, \vec{b}, \vec{S}) = W_{unp}(\vec{p}, \vec{b}) + \vec{S} \cdot \vec{W}_{pol}(\vec{p}, \vec{b})$$

- Generalize to covariant spin vector by boosting from the rest frame.
- The nucleons can have any of 4 polarizations: unpolarized, longitudinal, and transverse (x and y)

$$W_{\sigma'\sigma}(\bar{p},b) = \frac{1}{2(2\pi)^3} \int \frac{d^{2+}(p-p')}{\sqrt{p^+p'^+}} e^{-i(p-p')\cdot b} \Psi_{\sigma}^N(p) \Psi_{\sigma'}^{N*}(p')$$

 Since the Wigner distribution is built only from the nuclear wave functions (no gauge link), it has a high degree of symmetry:

$$W_{\sigma'\sigma}(\bar{p},b) = \frac{1}{2(2\pi)^3} \int \frac{d^{2+}(p-p')}{\sqrt{p^+p'^+}} e^{-i(p-p')\cdot b} \Psi_{\sigma}^N(p) \Psi_{\sigma'}^{N*}(p')$$

- Since the Wigner distribution is built only from the nuclear wave functions (no gauge link), it has a high degree of symmetry:
 - Discrete symmetries: P and T

$$W_{\sigma'\sigma}(\bar{p},b) = \frac{1}{2(2\pi)^3} \int \frac{d^{2+}(p-p')}{\sqrt{p^+p'^+}} e^{-i(p-p')\cdot b} \Psi_{\sigma}^N(p) \Psi_{\sigma'}^{N*}(p')$$

- Since the Wigner distribution is built only from the nuclear wave functions (no gauge link), it has a high degree of symmetry:
 - Discrete symmetries: P and T
 - Independent of the collision axis (direction of gauge link)

$$W_{\sigma'\sigma}(\bar{p},b) = \frac{1}{2(2\pi)^3} \int \frac{d^{2+}(p-p')}{\sqrt{p+p'+}} e^{-i(p-p')\cdot b} \Psi_{\sigma}^{N}(p) \Psi_{\sigma'}^{N*}(p')$$

- Since the Wigner distribution is built only from the nuclear wave functions (no gauge link), it has a high degree of symmetry:
 - Discrete symmetries: P and T
 - Independent of the collision axis (direction of gauge link)
- In the nuclear rest frame (assuming non-relativistic nucleon motion)

$$W_{\sigma'\sigma}(\vec{p},\vec{b}) = \frac{1}{2(2\pi)^3 m_N} \int d^3(p-p') e^{+i(\vec{p}-\vec{p}')\cdot\vec{b}} \Psi_{\sigma}^N(\vec{p}^2) \Psi_{\sigma'}^{N*}(\vec{p}'^2)$$

$$W_{\sigma'\sigma}(\bar{p},b) = \frac{1}{2(2\pi)^3} \int \frac{d^{2+}(p-p')}{\sqrt{p+p'+}} e^{-i(p-p')\cdot b} \Psi_{\sigma}^{N}(p) \Psi_{\sigma'}^{N*}(p')$$

- Since the Wigner distribution is built only from the nuclear wave functions (no gauge link), it has a high degree of symmetry:
 - Discrete symmetries: P and T
 - Independent of the collision axis (direction of gauge link)
- In the nuclear rest frame (assuming non-relativistic nucleon motion)

$$W_{\sigma'\sigma}(\vec{p},\vec{b}) = \frac{1}{2(2\pi)^3 m_N} \int d^3(p-p') e^{+i(\vec{p}-\vec{p}')\cdot\vec{b}} \Psi_{\sigma}^N(\vec{p}^2) \Psi_{\sigma'}^{N*}(\vec{p}'^2)$$

• 3D Rotational Symmetry

$$W_{\sigma'\sigma}(\bar{p},b) = \frac{1}{2(2\pi)^3} \int \frac{d^{2+}(p-p')}{\sqrt{p^+p'^+}} e^{-i(p-p')\cdot b} \Psi_{\sigma}^N(p) \Psi_{\sigma'}^{N*}(p')$$

- Since the Wigner distribution is built only from the nuclear wave functions (no gauge link), it has a high degree of symmetry:
 - Discrete symmetries: P and T
 - Independent of the collision axis (direction of gauge link)
- In the nuclear rest frame (assuming non-relativistic nucleon motion)

$$W_{\sigma'\sigma}(\vec{p},\vec{b}) = \frac{1}{2(2\pi)^3 m_N} \int d^3(p-p') e^{+i(\vec{p}-\vec{p}')\cdot\vec{b}} \Psi_{\sigma}^N(\vec{p}^2) \Psi_{\sigma'}^{N*}(\vec{p}'^2)$$

- 3D Rotational Symmetry

M. Sievert

Proton: Relativistically moving partons....
...Lorentz-Invariance Relations??

D. Pitonyak

Parameterization of the Wigner Distribution

Imposing P, T, and 3D rotation symmetry:

$$\begin{split} W(\vec{p},\vec{b},\vec{S}) &= W_{unp}[\vec{p}^2,\vec{b}^2,(\vec{p}\cdot\vec{b})^2] \\ &+ \vec{S}\cdot(\vec{b}\times\vec{p})\,W_{OAM}[\vec{p}^2,\vec{b}^2,(\vec{p}\cdot\vec{b})^2] \\ \vec{L}\cdot\vec{S} &\text{ Spin-Orbit Coupling!} \end{split}$$

Parameterization of the Wigner Distribution

Imposing P, T, and 3D rotation symmetry:

$$\begin{split} W(\vec{p},\vec{b},\vec{S}) &= W_{unp}[\vec{p}^2,\vec{b}^2,(\vec{p}\cdot\vec{b})^2] \\ &+ \vec{S}\cdot(\vec{b}\times\vec{p})\,W_{OAM}[\vec{p}^2,\vec{b}^2,(\vec{p}\cdot\vec{b})^2] \\ \vec{L}\cdot\vec{S} &\text{ Spin-Orbit Coupling!} \end{split}$$

 Gets integrated over impact parameters with the gauge link possessing 2D rotation symmetry:

$$\int d^2b W(\vec{p}, \vec{b}, \vec{S}) S(b_T)$$

$$b_{\perp}^{i}b_{\perp}^{j} \rightarrow \frac{1}{2}b_{T}^{2}\delta^{ij}$$

Parameterization of the Wigner Distribution

Imposing P, T, and 3D rotation symmetry:

$$\begin{split} W(\vec{p},\vec{b},\vec{S}) &= W_{unp}[\vec{p}^{\,2},\vec{b}^{\,2},(\vec{p}\cdot\vec{b})^2] \\ &+ \vec{S}\cdot(\vec{b}\times\vec{p})\,W_{OAM}[\vec{p}^{\,2},\vec{b}^{\,2},(\vec{p}\cdot\vec{b})^2] \\ \vec{L}\cdot\vec{S} &\text{ Spin-Orbit Coupling!} \end{split}$$

 Gets integrated over impact parameters with the gauge link possessing 2D rotation symmetry:

$$\int d^2b W(\vec{p}, \vec{b}, \vec{S}) S(b_T) \qquad b^i_{\perp} b^j_{\perp} \to \frac{1}{2} b_T^2 \delta^{ij}$$

The maximum spin-orbit structure of the unpolarized nucleus is

$$\begin{split} W(\vec{p}, \vec{b}, \vec{S}) \Rightarrow W_{unp}[p_T^2, b_T^2; p_z^2, b_z^2] \\ + b_z(\vec{p}_\perp \times \vec{S}_\perp) \, W_{OAM}[p_T^2, b_T^2; p_z^2, b_z^2] \\ \text{Depth Dependence!} \end{split}$$

- For an unpolarized nucleus, two channels survive:
 - Unpolarized nucleons: trivial channel
 - Transversely-polarized nucleons: OAM channel

- For an unpolarized nucleus, two channels survive:
 - Unpolarized nucleons: trivial channel
 - Transversely-polarized nucleons: OAM channel
- An unpolarized nucleus has 2 leading-twist TMD's:

$$\Phi^{A}(x,\vec{k}_{\perp}) = f_{1}^{A} \left[\frac{1}{2} \gamma^{-} \right] - \left(\frac{k_{\perp}^{j}}{M_{A}} h_{1}^{\perp A} \right) \left[\frac{i}{2} \gamma_{\perp}^{j} \gamma^{-} \right]$$

- For an unpolarized nucleus, two channels survive:
 - Unpolarized nucleons: trivial channel
 - Transversely-polarized nucleons: OAM channel
- An unpolarized nucleus has 2 leading-twist TMD's:

$$\Phi^{A}(x,\vec{k}_{\perp}) = f_{1}^{A} \begin{bmatrix} \frac{1}{2}\gamma^{-} \end{bmatrix} - \left(\frac{k_{\perp}^{j}}{M_{A}} h_{1}^{\perp A} \right) \begin{bmatrix} \frac{i}{2}\gamma_{\perp}^{j}\gamma^{-} \end{bmatrix}$$

Unpolarized quarks, azimuthally symmetric

- For an unpolarized nucleus, two channels survive:
 - Unpolarized nucleons: trivial channel
 - Transversely-polarized nucleons: OAM channel
- An unpolarized nucleus has 2 leading-twist TMD's:

$$\Phi^{A}(x,\vec{k}_{\perp}) = f_{1}^{A} \begin{bmatrix} \frac{1}{2}\gamma^{-} \end{bmatrix} - \left(\frac{k_{\perp}^{j}}{M_{A}} h_{1}^{\perp A} \right) \begin{bmatrix} \frac{i}{2}\gamma_{\perp}^{j}\gamma^{-} \end{bmatrix}$$

Unpolarized quarks, azimuthally symmetric

Boer-Mulders Distribution: Transversely polarized quarks, azimuthally antisymmetric

Unpolarized Quark Distribution f_1^A

$$f_1^A = \underbrace{\begin{array}{c} U \\ U \\ W_{unp} \otimes f_1^N \end{array}}_{W_{OAM} \otimes f_{1T}^{\perp N}} \underbrace{\begin{array}{c} U \\ U \\ W_{OAM} \otimes f_{1T}^{\perp N} \end{array}}_{W_{OAM} \otimes f_{1T}^{\perp N}}$$

$$f_1^A(x, k_T) = \frac{2A}{(2\pi)^5} \int d^{2+}p \, d^{2-}b \, d^2r \, d^2k' \, e^{-i(\vec{k}_{\perp} - \vec{k}'_{\perp} - \hat{x}\vec{p}_{\perp})} S_{(r_T, b_T)}^{[\infty^-, b^-]} \times \left(W_{unp}(p, b) \, f_1^N(\hat{x}, k'_T) - \frac{P^+b^-}{Am_N^2} (\vec{p}_{\perp} \cdot \vec{k}'_{\perp}) \, W_{OAM}(p, b) \, f_{1T}^{\perp N}(\hat{x}, k'_T) \right)$$

Unpolarized Quark Distribution f_1^A

$$f_1^A = \underbrace{\begin{array}{c} U \\ U \\ W_{unp} \otimes f_1^N \end{array}} + \underbrace{\begin{array}{c} U \\ W_{OAM} \otimes f_{1T}^{\perp N} \end{array}}$$

$$f_1^A(x, k_T) = \frac{2A}{(2\pi)^5} \int d^{2+}p \, d^{2-}b \, d^2r \, d^2k' \, e^{-i(\vec{k}_{\perp} - \vec{k}'_{\perp} - \hat{x}\vec{p}_{\perp})} S_{(r_T, b_T)}^{[\infty^-, b^-]} \times \left(W_{unp}(p, b) \, f_1^N(\hat{x}, k'_T) - \frac{P^+b^-}{Am_N^2} (\vec{p}_{\perp} \cdot \vec{k}'_{\perp}) \, W_{OAM}(p, b) \, f_{1T}^{\perp N}(\hat{x}, k'_T) \right)$$

Unpolarized Channel: $f_1^N \rightarrow f_1^A$

• Trivial density distribution + momentum broadening

Unpolarized Quark Distribution f_1^A

$$f_1^A = \underbrace{\begin{array}{c} U \\ U \\ W_{unp} \otimes f_1^N \end{array}} \underbrace{\begin{array}{c} U \\ W_{OAM} \otimes f_{1T}^{\perp N} \end{array}}$$

$$f_1^A(x, k_T) = \frac{2A}{(2\pi)^5} \int d^{2+}p \, d^{2-}b \, d^2r \, d^2k' \, e^{-i(\vec{k}_{\perp} - \vec{k}'_{\perp} - \hat{x}\vec{p}_{\perp})} S_{(r_T, b_T)}^{[\infty^-, b^-]} \times \left(W_{unp}(p, b) \, f_1^N(\hat{x}, k'_T) - \frac{P^+b^-}{Am_N^2} (\vec{p}_{\perp} \cdot \vec{k}'_{\perp}) \, W_{OAM}(p, b) \, f_{1T}^{\perp N}(\hat{x}, k'_T) \right)$$

Unpolarized Channel: $f_1^N \rightarrow f_1^A$

• Trivial density distribution + momentum broadening

OAM Channel: $f_{1T}^{\perp N} \rightarrow f_1^A$

• "Dipole modulation": Sivers function + momentum broadening

$$h_{1}^{\perp A} = \underbrace{\begin{array}{c} U \\ W_{unp} \stackrel{\downarrow}{\otimes} h_{1}^{\perp N} \end{array}}_{W_{unp} \stackrel{\downarrow}{\otimes} h_{1}^{\perp N}} + \underbrace{\begin{array}{c} U \\ W_{OAM} \stackrel{\downarrow}{\otimes} (h_{1}^{N} + h_{1T}^{\perp N}) \end{array}}_{W_{OAM} \stackrel{\downarrow}{\otimes} (h_{1}^{N} + h_{1T}^{\perp N})} \\ \times \left(\frac{\vec{k}_{\perp} \cdot \vec{k}'_{\perp}}{m_{N}} W_{unp}(p, b) h_{1}^{\perp N}(\hat{x}, k'_{T}) - \frac{P^{+}b^{-}}{Am_{N}} (\vec{p}_{\perp} \cdot \vec{k}_{\perp}) W_{OAM}(p, b) h_{1}^{N}(\hat{x}, k'_{T}) \\ - \frac{P^{+}b^{-}}{Am_{N}} \left(\frac{(\vec{p}_{\perp} \times \vec{k}'_{\perp})(\vec{k}_{\perp} \times \vec{k}'_{\perp})}{m_{2}^{2}} - \frac{k'_{T}^{2}(\vec{p}_{\perp} \cdot \vec{k}_{\perp})}{2m_{2}^{2}} \right) W_{OAM}(p, b) h_{1T}^{\perp N}(\hat{x}, k'_{T}) \end{aligned}$$

$$h_{1}^{\perp A} = \underbrace{\begin{array}{c} W_{unp} \otimes h_{1}^{\perp N} \\ W_{OAM} \otimes h_{1}^{\perp N} \end{array}}_{W_{Unp} \otimes h_{1}^{\perp N}} + \underbrace{\begin{array}{c} W_{Unp} \otimes h_{1}^{\perp N} \\ W_{OAM} \otimes h_{1}^{\perp N}$$

Unpolarized Channel: $h_1^{\perp N} \rightarrow h_1^{\perp A}$

• Trivial density distribution + momentum broadening

$$h_{1}^{\perp A} = \underbrace{\begin{array}{c} W_{unp} \otimes h_{1}^{\perp N} \\ W_{unp} \otimes h_{1}^{\perp N} \end{array}}_{W_{unp} \otimes h_{1}^{\perp N}} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1}^{\perp N}\right) \end{array}}_{$$

Unpolarized Channel: $h_1^{\perp N} \rightarrow h_1^{\perp A}$

• Trivial density distribution + momentum broadening

OAM Channel: h_1^N , $h_{1T}^{\perp N} \rightarrow h_1^{\perp A}$

• "Dipole modulation": Transversity + broadening

$$h_{1}^{\perp A} = \underbrace{\begin{array}{c} W_{unp} \otimes h_{1}^{\perp N} \\ W_{unp} \otimes h_{1}^{\perp N} \end{array}}_{W_{unp} \otimes h_{1}^{\perp N}} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}}_{W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right)} + \underbrace{\begin{array}{c} W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \\ W_{OAM} \otimes \left(h_{1}^{N} + h_{1T}^{\perp N}\right) \end{array}$$

Unpolarized Channel: $h_1^{\perp N} \rightarrow h_1^{\perp A}$

• Trivial density distribution + momentum broadening

OAM Channel: h_1^N , $h_{1T}^{\perp N} \rightarrow h_1^{\perp A}$

- "Dipole modulation": Transversity + broadening
- "Quadrupole modulation": Pretzelosity + broadening

TMD Mixing

$$\begin{array}{c|c} \text{Spin-Orbit Coupling} \\ W_{OAM} \end{array} + \begin{array}{c|c} \text{Momentum Broadening} \\ S_{(r_T,b_T)}^{[\infty^-,b^-]} \end{array} \rightarrow \begin{array}{c|c} \text{TMD} \\ \text{Mixing} \end{array}$$

TMD Mixing

$$\begin{array}{c} \text{Spin-Orbit Coupling} \\ W_{OAM} \end{array} + \begin{array}{c} \text{Momentum Broadening} \\ S_{[\infty^-,b^-]}^{[\infty^-,b^-]} \end{array} \rightarrow \begin{array}{c} \text{TMD} \\ \text{Mixing} \end{array}$$

Mixing occurs between the PT-even and PT-odd sectors:

TMD Mixing

$$\begin{array}{c} \text{Spin-Orbit Coupling} \\ W_{OAM} \end{array} + \begin{array}{c} \text{Momentum Broadening} \\ S_{[\infty^-,b^-]}^{[\infty^-,b^-]} \end{array} \rightarrow \begin{array}{c} \text{TMD} \\ \text{Mixing} \end{array}$$

Mixing occurs between the PT-even and PT-odd sectors:

Multiple rescattering is essential to break front / back symmetry

- b_z dependence provides a PT-reversing factor
- OAM is not enough: mixing vanishes without rescattering.

Implications for an EIC

(1.)

Deviation from simple broadening?

$$f_1^A \Leftrightarrow f_1^N$$

Presence of OAM!

Implications for an EIC

(1.)

Deviation from simple broadening?

$$f_1^A \Leftrightarrow f_1^N$$

Presence of OAM!

If the nucleonic

...and the nuclear TMD's are known... TMD's are measured...

...can directly extract OAM

$$f_1^N \qquad f_{1T}^{\perp N}$$

$$\begin{vmatrix} f_1^A \sim f_1^N \otimes W_{unp} \\ + f_1^A \otimes W_{OAM} \end{vmatrix} W_{OAM} \leftrightarrow \vec{L} \cdot \vec{S}$$

$$W_{OAM} \leftrightarrow \vec{L} \cdot \vec{S}$$

Implications for an EIC

(1.)

Deviation from simple broadening?

$$f_1^A \Leftrightarrow f_1^N$$

Presence of OAM!

If the nucleonic (2.) If the nucleonic TMD's are known... TMD's are measured...

...and the nuclear

...can directly extract OAM

$$f_1^N \qquad f_{1T}^{\perp N}$$

$$f_1^N$$
 $f_{1T}^{\perp N}$ $\begin{vmatrix} f_1^A \sim f_1^N \otimes W_{unp} \\ + f_1^A \otimes W_{OAM} \end{vmatrix} W_{OAM} \leftrightarrow \vec{L} \cdot \vec{S}$

$$W_{OAM} \leftrightarrow \vec{L} \cdot \vec{S}$$

This provides a prediction for additional mixing in other sectors!

$$h_1^{\perp A} \sim h_1^{\perp N} \otimes W_{unp} + (h_1^N + h_{1T}^{\perp N}) \otimes W_{OAM}$$

M. Sievert

• TMD mixing is a generic consequence of both spin-orbit coupling and high-density rescattering.

- TMD mixing is a generic consequence of both spin-orbit coupling and high-density rescattering.
- Formalism is well-suited to modeling:
 - Choose a form for $W(\vec{p}, \vec{b}, \vec{S}) \longrightarrow$ determines mixing fractions.
 - Use data or simple models for the nucleonic TMD's.
 - Determines the functional form of the nuclear TMD's.

- TMD mixing is a generic consequence of both spin-orbit coupling and high-density rescattering.
- Formalism is well-suited to modeling:
 - Choose a form for $W(\vec{p}, \vec{b}, \vec{S}) \longrightarrow$ determines mixing fractions.
 - Use data or simple models for the nucleonic TMD's.
 - Determines the functional form of the nuclear TMD's.
- Ingredients for a systematic global fit:
 - Extensive measurements of the nucleonic TMD's.

- TMD mixing is a generic consequence of both spin-orbit coupling and high-density rescattering.
- Formalism is well-suited to modeling:
 - Choose a form for $W(\vec{p}, \vec{b}, \vec{S}) \longrightarrow$ determines mixing fractions.
 - Use data or simple models for the nucleonic TMD's.
 - Determines the functional form of the nuclear TMD's.
- Ingredients for a systematic global fit:
 - Extensive measurements of the nucleonic TMD's.
 - Quantum evolution corrections
 - Large-x Q^2 evolution (CSS)
 - Small-x evolution: polarized and unpolarized.

Part II

4:24 pm, "Collective Behavior of Partons"

Summary

The gauge link which is essential for TMD structure represents very different physics at high density.

Summary

The gauge link which is essential for TMD structure represents very different physics at high density.

High-density effects can be re-summed, leading to a quasi-classical factorization of nuclear TMD's.

Summary

The gauge link which is essential for TMD structure represents very different physics at high density.

High-density effects can be re-summed, leading to a quasi-classical factorization of nuclear TMD's.

Spin-orbit coupling, together with multiple rescattering, leads to rich TMD mixing with predictive power.

